Thoughts on a Linguistic Infrastructure for
Mission-Critical Software Development

Nicholas Weininger
May 26, 2001

1 Introduction

In recent years our lives and livelihoods have come to depend more and more
on automated control systems. Historically, designs for such systems have been
based upon redundant, well-understood hardware; software has been something
of an afterthought. However, automated controllers in many domains, notably
avionics, are now being called upon to perform increasingly complex tasks in
software. The software developed to perform these tasks typically has two com-
mon characteristics:

1. it is developed largely using “off-the-shelf” programming tools, i.e. lan-
guages and programming environments designed for general-purpose soft-
ware development;

2. however, unlike general-purpose software, its correctness is verified by
a formal certification process which utilizes code review, coverage-based
testing, and traceability of code to formally specified requirements.

The certification process ensures that life-critical software is not subject to the
robustness problems experienced by, for example, Microsoft Windows. But as
the complexity of software grows, this certification process becomes much more
difficult, more costly, and less effective. In particular, manual review and test-
ing become extremely time-consuming and error-prone. The state of the art
in addressing certification complexity often involves replacing or supplement-
ing manual review activities with automated verification tools of various kinds.
The languages and environments used to develop the software, by contrast, are
usually seen as more-or-less fixed constants.

In this paper, I contend that current approaches are incomplete, and that
a real solution to certification complexity demands a radical rethinking of the
linguistic infrastructure used to develop mission-critical software. Here I define
“mission-critical software” fairly narrowly, to mean software used in situations
where a malfunction will result in injury or death, since it is this sort of software
which is usually subject to formal verification.



I argue in particular that the use of existing text-based programming lan-
guages impedes reviewers’ understanding of software, and is an obstacle to the
formal mathematical verification techniques required to catch subtle design er-
rors. Because modern software programs have a fixed representation as textual
source code, it is often difficult to organize a program in the ways best suited
to certifying its correctness.

One alternative, a representation-independent object-oriented visual language,
holds out the promise of increasing ease of verification dramatically, while re-
maining practical for large-scale software development. Such a language would
be conducive to the building of small, reusable, easily-certified components; the
intuitively understandable, visually expressible combination of those compo-
nents; and the verification of a software system in terms of formal assumptions
on component correctness. I will describe the basic structure such a language
would have, and how its features would aid in developing certifiably correct
software. No such language currently exists, but a project aimed at creating
one is underway: the Eidola project developed by Paul Cantrell and sited at
http://eidola.org. The rest of this paper is essentially an extended plug for
applying the Eidola concept to the mission-critical domain.

Although Eidola would be particularly beneficial to mission-critical systems,
the benefits it offers apply to all kinds of software engineering. This gener-
ality is essential to Eidola’s success in the mission-critical domain, because
mission-critical software developers tend to be leery of special-purpose solu-
tions. Special-purpose languages and development tools tend to be constricted
by their intended domain, hard to maintain, and subject to high costs of software
purchase and training. Thus Eidola can only become usable for mission-critical
development if it gains acceptance in “mainstream” software development.

The challenge in applying Eidola to mission-critical systems, then, is to
simultaneously retain its general applicability and keep it compatible with the
mission-critical domain. Ironically, Java, the modern programming language
closest to Fidola’s vision, is peculiarly unsuitable for some types of mission-
critical development. Eidola, therefore, should have an object-oriented design
at least as clean and sensible as Java’s, without necessitating the introduction
of those features which make Java unsuitable.

The rest of this paper is divided into five parts. First, I describe how the
nature of existing programming languages causes problems for software veri-
fication. Second, I discuss in more detail what a representation-independent
object-oriented visual language really means, and give some idea of how Eidola
might implement the general principles of such a language. Third, I discuss
how Eidola’s capabilities could alleviate the problems of verification discussed
in the first section. Fourth, I list necessary characteristics specific to a “mission-
critical Eidola”, that is, features that Eidola must have in order to work in the
mission-critical domain. Finally, I discuss the implications of Eidola for the
relationship between mission-critical software development and general-purpose
software development. Readers who are already familiar with Eidola may wish
to skip the second section; those who have experience developing and certifying
mission-critical software may wish to skip the first.



2 Software verification and its discontents

For a successful technology, reality must take precedence over public
relations, for Nature cannot be fooled.

—Richard Feynman

There exist several different sets of certification standards for different varieties
of mission-critical software. My own (admittedly limited) experience is with the
DO-178B standards for certifying software used in avionics, and so I will refer to
those standards in the following discussion. However, the certification methods
discussed, and their attendant problems, are generally applicable.

The DO-178B certification process essentially comprises the following steps:

1. Formal requirements specification. The tasks the software is to perform
must be described completely and clearly in requirements documents.

2. Code traceability to requirements. Every line of source code must aid in
implementing one or more of the specified requirements— i.e. “trace” to
requirements— and every requirement must be implemented in code.

3. Independent review of code correctness. All source code files must be re-
viewed to ensure that code is written according to previously specified
coding standards, and that the source code correctly implements the re-
quirements it is supposed to implement. The reviewer for a particular
segment of code must be someone who has not written that segment of
code, so that every line of code is examined by at least two people.

4. Independent testing for structural and requirements coverage. Testers must
develop a reproducible test suite to verify that the software actually per-
forms the required tasks correctly. In the course of executing the test
suite, every machine code instruction in the compiled object code must
be executed, and every conditional branch must be both taken and not
taken—i.e. “structural coverage” of all object code paths must be achieved.
The testers must work independently of the software development team.
Furthermore, the test suite itself must be reviewed independently for cor-
rectness.

Formal compliance with this process is a well-understood and relatively straight-
forward, if tedious, business. Substantive compliance is a different matter. It is
one thing, for example, to show that each requirement in the specification has
some block of code that traces to it; it is quite another to show that the relevant
blocks of code actually satisfy the requirements they trace to. Reviewers and
testers face a variety of difficulties in ensuring that a program purporting to
satisfy a requirements specification actually satisfies both the letter and spirit
of the specification.



2.1 Problems faced by reviewers

The principal substantive problem a reviewer faces is understanding how the
source code implements a given requirement. In a simple system, there may
be something close to a one-to-one correspondence between, say, class methods
and requirements; but in a more complex system, the correspondence between
requirements and code is often far from straightforward. Because a complex
software system typically has a multilevel design, the code that satisfies a given
requirement may be spread across multiple files and class definitions.

The structure of the parts of the system that satisfy a given requirement
is not intuitively apparent from looking at any one code file, since a code file
is by nature a low-level representation of a program design, and structural un-
derstanding requires a higher-level representation. The requirements document
may attempt to ameliorate this by explaining the implementation structure us-
ing flowcharts or other graphical devices, but then the reviewer must verify that
the textual source code really corresponds to the flowchart. The arrangement
of this correspondence typically depends on the coding style of the development
team, and it is likely to be easily comprehensible only to members of that team.

In practice, then, if you are a reviewer of a complex piece of software, it is
extremely difficult for you to grasp the structure of requirements satisfaction in a
program unless you have already worked on some part of that program. A “fully
independent” outside reviewer may give a formally correct but substantially
worthless review because of this lack of understanding. Thus, the best course
is often to assign review of a given code file to someone who is on the program
development team, but has worked on different code files. The network interface
developer for a control program, for example, might review the program’s fault
handling routines.

This has two important negative consequences. First, it can compromise the
intended effect of reviewer independence: a reviewer close to the development
process is more likely to fall prey to hidden assumptions and comfortable short-
cuts than is someone who has never seen the program before. Second, when
developers must divide their time between formal certification reviews and de-
velopment work, both development and certification slow down enormously.

Furthermore, most of the code in any given source file has nothing to do
with most of the things a certification reviewer must check for. For example,
common review tasks may include checking for array bounds violations and
divisions by zero; in code that includes no array indexing or division operations,
these checks are irrelevant. However, in order to verify this irrelevance one must
actually read through the entire code file— a careless skim may miss a division or
array index that you didn’t think was there! The fact that so much review time
is spent doing tedious checks for irrelevant things leads to an “eyes glazed over”
problem, compromising reviewers’ ability to think alertly about the things that
really matter.



2.2 Problems faced by testers

It seems obvious that testers should be less affected by the textual representation
of source code than reviewers. After all, independent testers do not need to
look at the source code; indeed, they are usually prohibited from looking at the
source code. Instead, a tester should treat the compiled program as a “black
box” which must be tested against a requirements document, and neither the
requirements document nor the object code should be affected by the source
language’s representation.

This is in fact true if the requirements are arrived at in advance before
code development begins, and do not change during code development and
testing. That is how things are supposed to happen. In the real world, code
and requirements are more commonly developed in parallel, as the release of one
version of a program breeds user demands for new features to be included in the
next version. Indeed, code may be developed for “beta release” purposes before
requirements are written for that code to satisfy. In such cases, some developer
must determine the testing impact of new code: that is, he or she must determine
what new requirements must be written and what existing requirements may
be affected, as well as the changes in paths that may affect the achievement of
structural coverage.

A developer working with testers thus needs an understanding of the im-
pact on requirements and paths of a change in their code, just as a reviewer
needs to understand the impact of a line of code on requirements satisfaction.
Here, again, what is needed is a high-level view of the program structure and
the “diff” of that structure produced by a code change; and again, the tex-
tual representation of source code makes it more difficult to comprehend that
structure.

There is a larger problem, however, that is specific to testing. One may write
a test for each requirement that verifies that that requirement is satisfied by the
program— under the conditions of the test suite. However, that is very far from
verifying that the requirement will be satisfied under all possible conditions that
the program might face. For example, a network protocol might successfully
deliver a packet within a time limit when a particular sequence of other packets
have been delivered; but some other sequence of previous packet deliveries might
cause the test packet to miss the deadline.

Testing for structural coverage does not solve this problem, because exploring
every path in a program does not mean exploring every possible state of the
program. Testers may find it next to impossible to produce a complete list of
program states that need testing. In principle, most complex programs probably
have an effectively infinite number of states, especially if time is a part of the
program state. In practice, most of those states may be redundant for testing
purposes; but since looking at a program’s source code provides few clues to
the structure of its state space, it is difficult to know for sure which states are
redundant.



2.3 Solutions and their problems
2.3.1 Modularity

Among the “standard” solutions to certification complexity and cost, the most
popular is a well-established technique of mainstream software engineering:
building programs in a highly modular, object-oriented manner. This can work
on two levels from a certification perspective. On a low level, modular construc-
tion of a program can break down the complicated review process into more
manageable chunks: instead of verifying that requirement X is satisfied by a
system all at once, a reviewer might initially verify that if classes A, B, and C
all work as documented then the requirement will be satisfied, and then sepa-
rately verify the correct operation of each class. On a higher level, a complex
system can be separated into several mutually interacting, reusable components
which are certified separately, with requirements on the correct operation of
each component and on the inter-component interfaces. This reduces long-term
certification cost by allowing components to be reused without recertification.

However, most existing programming languages usable for mission-critical
systems are not really well-designed for modularity. Effective use of modularity
to reduce verification costs requires strict adherence to encapsulation rules: for
encapsulation enables easy verification that components do not depend on each
other except in certain specified ways, and so allows the separation of review
tasks for different components. But in some currently used languages, the object
inheritance and typing syntax is not powerful enough, or not “clean” enough,
to implement a complex design without breaking the encapsulation rules. C++
is a particularly glaring example of this failure. There exist several powerful
programming languages which have good modularity properties, but they are
generally either not suitable for mission-critical systems (e.g. Java), or else not
sufficiently well-known and well-supported (e.g. Smalltalk).

Also, as stated in the previous sections, the textual representation of source
code makes it difficult to understand the modular structure of a program by
looking at code files. Thus it can be very tricky to show that the satisfaction
of a given requirement follows from the correct operation of components. This
task can be made easier by placing “implementation requirements” in the re-
quirements document for a system, which specify the correct operation of class
methods or other relatively small components, and then explaining in the re-
quirements document how the “implementation requirements” work to satisfy
the real system requirements. However, doing this increases development cost,
since the requirements document often needs to be modified to correspond to
code changes, even when the real requirements have not changed.

2.3.2 Annotating code with assertions

Another common verification technique, similar in spirit to modularity but work-
ing at a lower level, is the use of assertions to declare conditions that should
be true at specified points in the operation of a program. Such assertions may
be placed in comments in function bodies, function declarations, or class dec-



larations. They may take the form of invariants, which are supposed to be
true at all times, or pre/postconditions which are to be true before or after
a function invocation. Sometimes they are stated in a formal or semi-formal
mathematical language. For example, the introductory algorithms class I took
as an undergraduate included a verification of the correctness of a quicksort
implementation, using a variety of formally stated preconditions and invariants.

The intent of such assertions is twofold: to make developers’ thinking about
the correctness of their design more rigorous, and to aid reviewers in under-
standing why an implementation is correct. If the proper tools are available,
assertions may also be verifiable automatically, simplifying the human review
process. Automated verification of assertions can reduce the amount of mun-
dane review activity required and thus alleviate the “eyes glaze over” problem
discussed in Section 2.1.

But automated assertion verification directly from source code is not yet
practical, as discussed further in Section 2.3.3. Manual verification of assertions
is challenging in part because it is difficult to know when assertions are suffi-
cient to guarantee requirement correctness: too few assertions can give a false
sense of security, too many can actually increase the amount of mundane review
activity. More importantly, assertions often act like low-level “implementation
requirements” and are thus prey to the same problems as other types of require-
ments: it is hard to assess the impact of a change in code on assertions, and the
structure of code that satisfies an assertion can be hard to understand. Also,
formalism in assertion statements is hampered by the distinction between the
formal semantics of a programming language and its representation in source
code.

2.3.3 Formal methods

There is considerable current research interest in the use of formal methods, i.e.
mathematically based software tools for automated verification. The range of
such tools available is extremely wide: they include automated theorem provers,
logic checkers, and mathematical modeling languages of various types, some
domain-specific, others not. I will focus on one particular type of formal meth-
ods tool: general-purpose model checkers. A model checker generally takes a
program description and translates it into a set of state machines; it can then
verify that the program satisfies certain conditions by exhaustively but “clev-
erly” exploring the state space. One example of such a tool is SPIN; a descrip-
tion of SPIN and links to some applications can be found at http://netlib.bell-
labs.com /netlib/spin/whatispin.html.

Model checkers are especially promising in mission-critical applications, for
numerous reasons. They can supplement structural coverage testing by covering
portions of the state space that a traditional test suite might miss, and can check
requirements that may be difficult to test for. They can be used not only for
checking of high-level requirements, but also for low-level assertions (see Section
2.3.2). They can be used to model partial designs during the development
process, providing the ability to check the soundness of part of a program’s



design before implementing the whole program. Also, they can act as simulation
tools as well as verification tools, and can serve as debugging aids. For example,
when SPIN detects an assertion failure, it can graphically display the sequence
of program states that led to the failure; this is an enormous potential advance
over debugging an executable program, since a state sequence is generally very
difficult to capture from an executable.

Model checkers face several large obstacles to their real-world application.
The single biggest obstacle is the “state space explosion:“ complex programs, as
noted in Section 2.2, tend to have intractably huge state spaces, and reducing
them to an explorable size is a very hard problem. Language representation
cannot reduce the inherent difficulty of this problem: it will have to be solved
by research into better reduction heuristics, and by more powerful computers
that increase the size of the explorable state space.

Language representation, however, does affect the potential of model check-
ing. Model checkers typically require that a program model be constructed
using a pseudo-imperative modeling language; SPIN, for example, uses the C-
like language Promela. In order to use a model checker for verification, then,
you need to be able to translate back and forth between the modeling language
and the source code language, and to verify that this translation is correct. This
translation, and the interpretation of results given by the model checker, must
be done by someone who has experience with the model checker as well as the
program to be translated. For these reasons, the cost of using model checkers in
development is often prohibitively high even if the state space explosion problem
can be solved.

There has been some recent work on model checkers that work directly from
source code. While promising, this work does not fully solve the problem of
integrating model checking into the development process. For example, to use
model checking as a debugging tool, the representation of a state sequence
ought to be tied directly into the program development environment; state space
illustrations ought to make reference to the actual program code. This is an as
yet unexplored frontier. Furthermore, model checking directly from source code
is hard when the source code language design is not mathematically “clean,” as
is the case with most current mission-critical development languages.



3 The Eidola concept and its realization

Representations of the language thus exist for the benefit of the
programmer rather than the compiler, and freed from the constraints
of text files, we can tackle the question of how to notate a program
well.

— Paul Cantrell, from the Eidola webpage

The documents written by Paul Cantrell, available from the webpage http://eidola.org,
include an exposition of the design motivation behind Eidola. I will give here

only a brief and somewhat formalistic capsule description of Eidola’s key char-
acteristics; I urge interested or confused readers to go and read Paul’s better

and more detailed explanation. Keep in mind also that Eidola is still in the
“pre-alpha” stage of development as of this writing, and so many important
parts of it are still pipe dreams.

In the introduction to this paper, I defined Eidola as a representation-
independent object-oriented visual language. Representation independence means
that the fundamental form of a program is not defined by its representation to
the programmer. Rather, an Eidola program “is” a set of abstract expressions
conforming to a mathematically described formal semantics. An Eidola pro-
gram is valid if and only if it conforms to the semantics, no matter how the
program’s component expressions are represented. Thus the formal semantics
document for Eidola is not just an adjunct to a source code syntax; it is the
complete specification of the language standard.

Object orientation implies that Eidola should have a clean, powerful typing
structure providing the features we expect in an OO language: method encapsu-
lation, inheritance, etc. Unlike certain other languages in which the OO design
is grafted on to the algorithmic semantics as an afterthought, in Eidola the se-
mantics of class definitions and inheritance are the first things to be laid out, and
the features on which the most thought has been expended. The representation
independence of Eidola means that it need not sacrifice a clean OO design in
order to provide “syntactic sugar:“ simplifying complicated general constructs,
or providing useful shortcuts, are tasks that can be left to the representation.

The “visual” part of the definition means that some sort of visual notation
scheme is needed to allow a programmer to view and edit Eidola programs.
No such notation has yet been designed, although Paul has had some thoughts
on the subject. The principal idea, of course, is that a notation should be
superior to, or at least as good as, a text source code language. As discussed
in Section 2, the major failing of textual languages, and the one that inspired
Eidola’s creation, is their failure to effectively represent the multilevel structure
of complicated programs: a code file tells you only about the lowest level of
structure.

This is a recognized problem in software engineering, and there are numer-
ous existing tools designed to deal with it. Most of these tools are “wrappers”
of various types around source code: class browsers, RAD tools, and the like.
An Eidola notation may well resemble one of these tools; certainly it should in-



corporate the insights gained from their development. But representation inde-
pendence means that an Eidola notation would be fundamentally more powerful
than these tools: it would have full editing capability, unlike class browsers, and
it would be free of translation/back-translation problems, unlike RAD tools.
Furthermore, many visual development tools are domain-specific; an Eidola no-
tation might also be domain-specific in its interface design, but the underlying
programs it produced would be fully general and editable in other notations
without change.

Of course, representation independence also opens the door to a wide variety
of “exotic” notation ideas: 3-D structure walkthroughs, touch-based notations
for the blind, etc. Nor is it necessary to assume that a program would be
developed using a single notation. One notation could be tailored to the needs
of initial design and prototyping, another to a “rapid-iteration” phase of quickly
changing development, and still another to review and formal verification (on
which more below). Eidola’s representation independence ensures that multiple
notations could work together on the same program without conflict; because
the underlying abstract form of the program is the same for all representations,
no one notation can compromise its generality.

Finally, it is worth noting that the Eidola semantics is, and will remain, an
open standard; its reference implementation will be free software, and it will
work with free tools whenever possible.

10



4 How Eidola could make verification easier

The truth of the theorem is obvious from the following diagram...
— Richard Lyons

I believe that Eidola could significantly improve the development and verifica-
tion of mission-critical software, and in particular, that it could alleviate most of
the problems enumerated in Section 2. First, because Eidola will be visually no-
tated, it will make structural understanding of programs easier, and thus make
code review easier and more effective. Second, because the fundamental form of
Eidola programs is abstract and mathematical, it will make review automation
and model checking easier. Third, the combination of abstract representation
and visual notation will make for easy integration of the development and mod-
eling processes, enabling developers to verify their designs more often and more
fully. Each of these advantages deserves detailed examination.

4.1 Eidola’s effects on code review

A good Eidola notation would, first and foremost, help reviewers by providing
structural insight into how a program satisfies its requirements. The key advan-
tage here is that a structural illustration of the program would be developed as
a part of code development, not separately from it. Thus, unlike flowcharts or
other adjunct illustrations, the notational representation of the program struc-
ture would require no additional effort above and beyond the code development,
and it could never get out of sync with the program itself. Furthermore, when
two versions of an Eidola program need to be compared, the Eidola notation
could provide a visual “structure diff”; this would illustrate what really changed
between the versions more effectively than any text-file diff could. Programmers
have long recognized that good code should ideally be “self-documenting”; Ei-
dola would bring that ideal closer to reality.

A notation designed specifically for formal verification could do even better.
For example, such a notation might provide for hyperlinks from source code to
specification documents. It might be able to automatically generate a report
on traceability to documentation, or a list of the branch paths which need to
be tested for structural coverage. Such helpful functions could be added on as
“hints” annotating a program, without affecting the accessibility of the program
code to other notations.

Because an Eidola program’s structure would be easier to understand, it
would be easier for a “fully independent” reviewer— one who is not familiar with
the developers’ coding style and has never seen the code before— to review a
program effectively. This would rectify the problems with reviewer independence
described in Section 2.1. Furthermore, while an Eidola notation could play the
role that “syntactic sugar” constructs play in existing programming languages,
it could also do away with the “syntactic cruft”— semicolons, for example— that
is necessary for easy text processing but does not aid in program understanding.
Eidola notations could use visual cues to bring out the important constructs in

11



a program, allowing a reviewer to concentrate on the more subtle conceptual
review tasks without being impeded by notation.

Also, because the fundamental form of Eidola programs is abstract, auto-
mated or semi-automated analysis of semantic constructs would become much
easier. Searching for, say, all division operators in a source code file is a tricky
business at best, as anyone who has searched a C++ file for “/” knows. But a
search for division operators in an Eidola program would be trivial, since Eidola
programs are stored in terms of meaningful expressions. A good notation could
present the results of such a search in a format that would make it (relatively)
easy to evaluate, for example, whether any denominator might be zero.

4.2 Eidola’s effects on formal modeling

The principal advantage of Eidola for the use of formal methods is that Eidola
would alleviate the translation problem. Since Eidola programs are already in
the abstract format that a model checker operates on, an Eidola program might
be worked on directly by a model checker. Some additional constructs would
probably be needed for modeling the temporal and hardware environment in
which a software system exists, e.g. the temporal nondeterminism of a concur-
rent system. But adding those constructs would undoubtedly be easier than
translating everything over to the modeling language.

An Eidola notation would also be well suited to integrating model checking
with the development process. Assertions embedded in code could be checked
either at runtime or by the model checker; when the model checker found an
assertion failure, the code and data structures involved in the failure could be
graphically called out as part of the program representation. If the programmer
wanted to model a partial version of the program (perhaps because the full
program state space was intractably large), he or she could do so, and then
have the notation graphically illustrate which features of the full version were
left out of the partial version. With text-based source code languages, this
comparison is very difficult, especially when the partial version is heavily “cut
down” and preserves only the high-level structure of the full program; in such
cases, the source code file diffs are essentially useless, but an Eidola diff could
call out the high-level differences effectively.

In particular, Eidola would aid the process of “program slicing.” Very
roughly, program slicing means extracting from a program the portions that
are relevant to a particular condition or assertion. For example, if a program-
mer wished to assert that a given variable’s value was always nonzero upon the
invocation of a particular function, a program slicer might pull out just the
constructs that set the value of that variable, and the scoping structure around
them. Program slicing could be immensely helpful to the effective use of model
checking, since it allows smaller, simpler “sliced” state spaces to be checked in
place of the whole program’s state space. But a program slicer needs to work
on clean, easily analyzable abstract constructs, and getting these out of source
code is a difficult task; since Eidola programs are already abstractly represented,
slicing them ought to be easier.

12



5 Eidola for the mission-critical domain

In theory, there is no difference between theory and practice; in
practice, there is.

— Dick Molnar

In order for Eidola to be viable for mission-critical applications, it must address
not only the demands of verifiability, but also the task characteristics of these
applications. The tasks performed by mission-critical software tend to have two
peculiar attributes:

1. they are real-time; that is, they must be guaranteed to complete execution
within a specified time interval after initial invocation, often a periodic
invocation with a fixed period (e.g. once every 20 milliseconds).

2. they are embedded, i.e. dedicated to the control of special-purpose hard-
ware, and so need to be able to communicate directly with that hardware—
typically through references to fixed memory addresses or ports. This also
often means that specialized subroutines need to be written in assembly
language.

Thus, a mission-critical executable typically must not contain any routines— in-
cluding runtime libraries or other support routines— that are not verifiably de-
terministic in their operation; and a language for mission-critical development
must allow low-level interaction with hardware. These requirements are what
make Java, for example, unsuitable for mission-critical development: Java con-
tains nondeterministic garbage-collection routines as a standard, unremovable
part of the language, and its design deliberately makes it difficult to reference
memory directly.

However, features such as garbage collection and rich standard libraries are
extremely desirable for most mainstream software development, and they will
likely be included in Eidola. As stated in the Introduction, if Eidola is to be
usable for mission-critical development, it must gain acceptance in the wider
non-mission-critical world. Therefore, there will probably have to be a special
“mission-critical” version of Eidola which is compatible with, but not identical
to, the mainstream version. This special version, hereafter referred to as MC
Eidola, should contain only those restrictions and /or additional features strictly
necessary for the mission-critical domain; an MC Eidola program should be
editable by any compliant Eidola notation, but may have a separate compiler
and/or runtime environment.

I will first discuss the ways in which MC Eidola will need to depart from the
mainstream version of Eidola, and then discuss generally applicable features that
are especially pertinent to the mission-critical domain. The following should be
taken as a set of recommendations for future design work; remember that Eidola
is still in the early stages, and much nontrivial development needs to be done.

13



5.1 Special features of MC Eidola

The overriding necessity behind MC Eidola is the need to create a “pure” ex-
ecutable, i.e. one which strictly limits the scope of runtime support code that
is not actually part of the Eidola program. Any runtime support code that
does have to be included must be assured not to interfere with the needs of
a mission-critical application. For one thing, this means that an MC Eidola
program must be compilable to real machine code, not to a virtual machine.

It also means that MC Eidola will probably have to disallow the use of certain
language features of general Eidola; garbage collection is the obvious example,
but others have been suggested (e.g. runtime type information, dynamic class
loading, reflection). The nondeterminism of garbage collection is really just
one instance of the memory allocation problem; in fact, all memory allocation
routines are likely to need modification in mission-critical applications. Different
mission-critical applications tend to have different requirements for memory
allocation schemes, depending on the environment in which they run. Some may
even require special things to be done with stack allocation of local variables.
Thus an MC Eidola development environment will probably have to provide
hooks that allow developers to write their own application-specific versions of
runtime memory allocation routines. It may also prove necessary to add a
“delete” operator to the language which does nothing in the general version of
Eidola but can be implemented nontrivially in MC Eidola.

There is at least one more language feature requiring runtime support code:
method invocation. While this clearly cannot be removed from MC Eidola,
the runtime support code necessary for it is simple enough, and limited enough
in scope, that it will not present a big problem for verifiability. Furthermore,
method invocation support code is already unavoidably present in almost all
existing programming languages, so it is already a known problem for mission-
critical developers.

The other major category of standard runtime code will involve standard
class definitions for I/O, commonly used types, data structures and algorithms,
etc. MC Eidola should simply disallow most of these; mission-critical devel-
opers can write their own verified versions if necessary. Again, since existing
programming languages already contain such standard libraries (e.g. the C++
input/output libs), working without them is a known problem in mission-critical
development. And again, in those cases where the runtime code cannot be omit-
ted (e.g. definitions for very basic data types like integers and characters), it is
simple enough not to present a problem.

5.2 General Eidola features helpful to the mission-critical
domain

Eidola’s algorithmic semantics should make it possible to write a function body
in another language, perhaps as part of a library, and then call that function
from Eidola code. This is a good thing for mainstream software development,
but is especially important for mission-critical development, since many routines

14



in a mission-critical program may have to be written in assembly language. Note
that such interfaces are very hard to do well, and doing them in Eidola is very
much an unsolved problem. Dealing with calling conventions and side effects
when calling functions written in other languages, for example, is very hard
to do in a portable manner. From a mission-critical perspective, it is fortunate
that such interfaces need to be in general Eidola, since the design effort required
to include them might not be justified for mission-critical needs alone.

Finally, for Eidola to be maximally useful in developing verifiable software,
an Eidola development environment should have a rich expression language for
assertions that refer to program objects. Such assertions should ideally include
quantifiers, e.g. “all Foobar objects in the system have a properly initialized
Baz member”; quantified assertions would have to be checked either by a special
runtime library or by a model checker. It is not clear at this point, however,
whether such assertions would actually need to be part of the Eidola semantics
proper. Assertions might instead exist as “hints” which would be attached
to program elements but not affected by program semantics; a supplemental
standard for assertion semantics could then function as an optional addition to
the Eidola program semantics.

15



6 Conclusion

The Great Shame of computer science is that we don’t seem to be
able to write software much better as computers get much faster...
The distance between the ideal computers we imagine in our thought
experiments and the real computers we know how to unleash on the
world could not be more bitter.

— Jaron Lanier

While T have dwelled in this paper upon the problems of mission-critical soft-
ware development, in a sense the really remarkable thing is how well it works.
Laments over the persistence of bugginess in software are legion; Jaron Lanier’s,
quoted above, is just one of the most recent. Yet, for example, the software
which goes into our airplanes has a very good quality record; as of this writing,
I can still confidently state that no plane has ever crashed due to a software
bug. This is no excuse for complacency, but it serves to illustrate the unusually
good record of the mission-critical domain, in an industry plagued by quality
problems.

Enormous numbers of papers have been written debating the reasons for
these problems, and proposing various schemes for improving software quality.
Many of these schemes involve rigid, formalistic development processes that
perhaps seek to emulate mission-critical certification processes. As I see it, such
schemes miss the point. We really already know how to develop high-quality
software, and it is common-sense practices, not formalized processes, that do it.
The necessary practices are:

e formal analysis of design and implementation
e vigilant, independent code review

e extensive testing

The problem is that we don’t know how to develop high-quality software quickly
and cheaply enough. Analysis, review, and testing, when done right, require
highly skilled developers and large investments of developer time. Since devel-
oper time is extremely expensive and the software market demands fast product
lifecycles, most software developers are not able to employ common-sense quality
practices to the extent they should. High-quality software is thus produced only
when the criticality of the application justifies the high cost of these practices.

This is where the impact of Eidola could be most deeply felt. As I have
attempted to demonstrate in this paper, Eidola could potentially achieve large
increases in the ease, and therefore reductions in the cost, of review and anal-
ysis. A good Eidola system should make it easier to perform automated or
semi-automated review and verification tasks informally, even when a formal
certification process is not required.

If the good practices used in mission-critical development become easier and
cheaper, they are likely to gain wider acceptance outside the mission-critical

16



world. At the same time, Eidola can bring to mission-critical development the
design advantages of mainstream OO languages like Java. Thus Eidola could
help to “close the gap” between mission-critical and other software, improving
the quality of both.

Another frequently heard complaint in computer science is that few far-
reaching software innovations have found acceptance in the real world: we still
use graphical interfaces, for example, whose essential features were designed at
Xerox PARC in the 1970s. I hope Eidola will serve to answer that complaint. It
will not solve the many truly difficult problems of software engineering; it will
not make it any easier to come up with better algorithms or better data struc-
tures. But it may free software developers to focus on the important problems,
rather than spending their time on the mundane problems created by source
code.

17



